Planet Jupiter 2016 – Ioannis (Yannis) A. Bouhras


Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a giant planet with a mass one-thousandth that of the Sun, but two-and-a-half times that of all the other planets in the Solar System combined. Jupiter and Saturn are gas giants; the other two giant planets, Uranus and Neptune, are ice giants. Jupiter has been known to astronomers since antiquity. It is named after the Roman god Jupiter. When viewed from Earth, Jupiter can reach an apparent magnitude of −2.94, bright enough for its reflected light to cast shadows, and making it on average the third-brightest natural object in the night sky after the Moon and Venus.

Jupiter is primarily composed of hydrogen with a quarter of its mass being helium, though helium comprises only about a tenth of the number of molecules. It may also have a rocky core of heavier elements, but like the other giant planets, Jupiter lacks a well-defined solid surface. Because of its rapid rotation, the planet’s shape is that of an oblate spheroid (it has a slight but noticeable bulge around the equator). The outer atmosphere is visibly segregated into several bands at different latitudes, resulting in turbulence and storms along their interacting boundaries. A prominent result is the Great Red Spot, a giant storm that is known to have existed since at least the 17th century when it was first seen by telescope. Surrounding Jupiter is a faint planetary ring system and a powerful magnetosphere. Jupiter has 79 known moons, including the four large Galilean moons discovered by Galileo Galilei in 1610. Ganymede, the largest of these, has a diameter greater than that of the planet Mercury.

Jupiter has been explored on several occasions by robotic spacecraft, most notably during the early Pioneer and Voyager flyby missions and later by the Galileo orbiter. In late February 2007, Jupiter was visited by the New Horizons probe, which used Jupiter’s gravity to increase its speed and bend its trajectory en route to Pluto. The latest probe to visit the planet is Juno, which entered into orbit around Jupiter on July 4, 2016. Future targets for exploration in the Jupiter system include the probable ice-covered liquid ocean of its moon Europa.

Formation and migration

Astronomers have discovered nearly 500 planetary systems with multiple planets. Regularly these systems include a few planets with masses several times greater than Earth’s (super-Earths), orbiting closer to their star than Mercury is to the Sun, and sometimes also Jupiter-mass gas giants close to their star.

Earth and its neighbor planets may have formed from fragments of planets after collisions with Jupiter destroyed those super-Earths near the Sun. As Jupiter came toward the inner Solar System, in what theorists call the grand tack hypothesis, gravitational tugs and pulls occurred causing a series of collisions between the super-Earths as their orbits began to overlap.

Jupiter moving out of the inner Solar System would have allowed the formation of inner planets, including Earth.
Physical characteristics

Jupiter is composed primarily of gaseous and liquid matter. It is the largest of the four giant planets in the Solar System and hence its largest planet. It has a diameter of 142,984 km (88,846 mi) at its equator. The average density of Jupiter, 1.326 g/cm3, is the second highest of the giant planets, but lower than those of the four terrestrial planets.
Composition

Jupiter’s upper atmosphere is about 88–92% hydrogen and 8–12% helium by percent volume of gas molecules. A helium atom has about four times as much mass as a hydrogen atom, so the composition changes when described as the proportion of mass contributed by different atoms. Thus, Jupiter’s atmosphere is approximately 75% hydrogen and 24% helium by mass, with the remaining one percent of the mass consisting of other elements. The atmosphere contains trace amounts of methane, water vapor, ammonia, and silicon-based compounds. There are also traces of carbon, ethane, hydrogen sulfide, neon, oxygen, phosphine, and sulfur. The outermost layer of the atmosphere contains crystals of frozen ammonia. The interior contains denser materials—by mass it is roughly 71% hydrogen, 24% helium, and 5% other elements. Through infrared and ultraviolet measurements, trace amounts of benzene and other hydrocarbons have also been found.

The atmospheric proportions of hydrogen and helium are close to the theoretical composition of the primordial solar nebula. Neon in the upper atmosphere only consists of 20 parts per million by mass, which is about a tenth as abundant as in the Sun. Helium is also depleted to about 80% of the Sun’s helium composition. This depletion is a result of precipitation of these elements into the interior of the planet.

Based on spectroscopy, Saturn is thought to be similar in composition to Jupiter, but the other giant planets Uranus and Neptune have relatively less hydrogen and helium and relatively more ices and are thus now termed ice giants.

Mass and size

Jupiter’s diameter is one order of magnitude smaller (×0.10045) than that of the Sun, and one order of magnitude larger (×10.9733) than that of Earth. The Great Red Spot is roughly the same size as Earth.

Jupiter’s mass is 2.5 times that of all the other planets in the Solar System combined—this is so massive that its barycenter with the Sun lies above the Sun’s surface at 1.068 solar radii from the Sun’s center. Jupiter is much larger than Earth and considerably less dense: its volume is that of about 1,321 Earths, but it is only 318 times as massive. Jupiter’s radius is about 1/10 the radius of the Sun,[34] and its mass is 0.001 times the mass of the Sun, so the densities of the two bodies are similar.[35] A “Jupiter mass” (MJ or MJup) is often used as a unit to describe masses of other objects, particularly extrasolar planets and brown dwarfs. So, for example, the extrasolar planet HD 209458 b has a mass of 0.69 MJ, while Kappa Andromedae b has a mass of 12.8 MJ.

Theoretical models indicate that if Jupiter had much more mass than it does at present, it would shrink. For small changes in mass, the radius would not change appreciably, and above about 500 M⊕ (1.6 Jupiter masses) the interior would become so much more compressed under the increased pressure that its volume would decrease despite the increasing amount of matter. As a result, Jupiter is thought to have about as large a diameter as a planet of its composition and evolutionary history can achieve. The process of further shrinkage with increasing mass would continue until appreciable stellar ignition was achieved, as in high-mass brown dwarfs having around 50 Jupiter masses.

Although Jupiter would need to be about 75 times as massive to fuse hydrogen and become a star, the smallest red dwarf is only about 30 percent larger in radius than Jupiter. Despite this, Jupiter still radiates more heat than it receives from the Sun; the amount of heat produced inside it is similar to the total solar radiation it receives. This additional heat is generated by the Kelvin–Helmholtz mechanism through contraction. This process causes Jupiter to shrink by about 2 cm each year. When it was first formed, Jupiter was much hotter and was about twice its current diameter.


Internal structure

Jupiter is thought to consist of a dense core with a mixture of elements, a surrounding layer of liquid metallic hydrogen with some helium, and an outer layer predominantly of molecular hydrogen. Beyond this basic outline, there is still considerable uncertainty. The core is often described as rocky, but its detailed composition is unknown, as are the properties of materials at the temperatures and pressures of those depths (see below). In 1997, the existence of the core was suggested by gravitational measurements,[43] indicating a mass of from 12 to 45 times that of Earth, or roughly 4%–14% of the total mass of Jupiter. The presence of a core during at least part of Jupiter’s history is suggested by models of planetary formation that require the formation of a rocky or icy core massive enough to collect its bulk of hydrogen and helium from the protosolar nebula. Assuming it did exist, it may have shrunk as convection currents of hot liquid metallic hydrogen mixed with the molten core and carried its contents to higher levels in the planetary interior. A core may now be entirely absent, as gravitational measurements are not yet precise enough to rule that possibility out entirely.

The uncertainty of the models is tied to the error margin in hitherto measured parameters: one of the rotational coefficients (J6) used to describe the planet’s gravitational moment, Jupiter’s equatorial radius, and its temperature at 1 bar pressure. The Juno mission, which arrived in July 2016, is expected to further constrain the values of these parameters for better models of the core.

The core region may be surrounded by dense metallic hydrogen, which extends outward to about 78% of the radius of the planet. Rain-like droplets of helium and neon precipitate downward through this layer, depleting the abundance of these elements in the upper atmosphere.[30][48] Rainfalls of diamonds have been suggested to occur on Jupiter, as well as on Saturn and ice giants Uranus and Neptune.

Above the layer of metallic hydrogen lies a transparent interior atmosphere of hydrogen. At this depth, the pressure and temperature are above hydrogen’s critical pressure of 1.2858 MPa and critical temperature of only 32.938 K. In this state, there are no distinct liquid and gas phases—hydrogen is said to be in a supercritical fluid state. It is convenient to treat hydrogen as gas in the upper layer extending downward from the cloud layer to a depth of about 1,000 km, and as liquid in deeper layers. Physically, there is no clear boundary—the gas smoothly becomes hotter and denser as one descends.

The temperature and pressure inside Jupiter increase steadily toward the core, due to the Kelvin–Helmholtz mechanism. At the pressure level of 10 bars (1 MPa), the temperature is around 340 K (67 °C; 152 °F). At the phase transition region where hydrogen—heated beyond its critical point—becomes metallic, it is calculated the temperature is 10,000 K (9,700 °C; 17,500 °F) and the pressure is 200 GPa. The temperature at the core boundary is estimated to be 36,000 K (35,700 °C; 64,300 °F) and the interior pressure is roughly 3,000–4,500 GPa.

Atmosphere

Jupiter has the largest planetary atmosphere in the Solar System, spanning over 5,000 km (3,000 mi) in altitude. Because Jupiter has no surface, the base of its atmosphere is usually considered to be the point at which atmospheric pressure is equal to 100 kPa (1.0 bar).


Cloud layers

Jupiter is perpetually covered with clouds composed of ammonia crystals and possibly ammonium hydrosulfide. The clouds are located in the tropopause and are arranged into bands of different latitudes, known as tropical regions. These are sub-divided into lighter-hued zones and darker belts. The interactions of these conflicting circulation patterns cause storms and turbulence. Wind speeds of 100 m/s (360 km/h) are common in zonal jets. The zones have been observed to vary in width, color and intensity from year to year, but they have remained sufficiently stable for scientists to give them identifying designations.


Jupiter clouds

The cloud layer is only about 50 km (31 mi) deep, and consists of at least two decks of clouds: a thick lower deck and a thin clearer region. There may also be a thin layer of water clouds underlying the ammonia layer. Supporting the idea of water clouds are the flashes of lightning detected in the atmosphere of Jupiter. These electrical discharges can be up to a thousand times as powerful as lightning on Earth. The water clouds are assumed to generate thunderstorms in the same way as terrestrial thunderstorms, driven by the heat rising from the interior.

The orange and brown coloration in the clouds of Jupiter are caused by upwelling compounds that change color when they are exposed to ultraviolet light from the Sun. The exact makeup remains uncertain, but the substances are thought to be phosphorus, sulfur or possibly hydrocarbons. These colorful compounds, known as chromophores, mix with the warmer, lower deck of clouds. The zones are formed when rising convection cells form crystallizing ammonia that masks out these lower clouds from view.

Jupiter’s low axial tilt means that the poles constantly receive less solar radiation than at the planet’s equatorial region. Convection within the interior of the planet transports more energy to the poles, balancing out the temperatures at the cloud layer.


Great Red Spot and other vortices


Time-lapse sequence from the approach of Voyager 1, showing the motion of atmospheric bands and circulation of the Great Red Spot. Recorded over 32 days with one photograph taken every 10 hours (once per Jovian day). See full size video.

The best known feature of Jupiter is the Great Red Spot, a persistent anticyclonic storm that is larger than Earth, located 22° south of the equator. It is known to have been in existence since at least 1831, and possibly since 1665. Images by the Hubble Space Telescope have shown as many as two “red spots” adjacent to the Great Red Spot. The storm is large enough to be visible through Earth-based telescopes with an aperture of 12 cm or larger. The oval object rotates counterclockwise, with a period of about six days. The maximum altitude of this storm is about 8 km (5 mi) above the surrounding cloudtops..

The Great Red Spot is large enough to accommodate Earth within its boundaries. Mathematical models suggest that the storm is stable and may be a permanent feature of the planet. However, it has significantly decreased in size since its discovery. Initial observations in the late 1800s showed it to be approximately 41,000 km (25,500 mi) across. By the time of the Voyager flybys in 1979, the storm had a length of 23,300 km (14,500 mi) and a width of approximately 13,000 km (8,000 mi). Hubble observations in 1995 showed it had decreased in size again to 20,950 km (13,020 mi), and observations in 2009 showed the size to be 17,910 km (11,130 mi). As of 2015, the storm was measured at approximately 16,500 by 10,940 km (10,250 by 6,800 mi), and is decreasing in length by about 930 km (580 mi) per year.

Storms such as this are common within the turbulent atmospheres of giant planets. Jupiter also has white ovals and brown ovals, which are lesser unnamed storms. White ovals tend to consist of relatively cool clouds within the upper atmosphere. Brown ovals are warmer and located within the “normal cloud layer”. Such storms can last as little as a few hours or stretch on for centuries.

Even before Voyager proved that the feature was a storm, there was strong evidence that the spot could not be associated with any deeper feature on the planet’s surface, as the Spot rotates differentially with respect to the rest of the atmosphere, sometimes faster and sometimes more slowly.

In 2000, an atmospheric feature formed in the southern hemisphere that is similar in appearance to the Great Red Spot, but smaller. This was created when several smaller, white oval-shaped storms merged to form a single feature—these three smaller white ovals were first observed in 1938. The merged feature was named Oval BA, and has been nicknamed Red Spot Junior. It has since increased in intensity and changed color from white to red.

In April 2017, scientists reported the discovery of a “Great Cold Spot” in Jupiter’s thermosphere at its north pole that is 24,000 km (15,000 mi) across, 12,000 km (7,500 mi) wide, and 200 °C (360 °F) cooler than surrounding material. The feature was discovered by researchers at the Very Large Telescope in Chile, who then searched archived data from the NASA Infrared Telescope Facility between 1995 and 2000. They found that, while the Spot changes size, shape and intensity over the short term, it has maintained its general position in the atmosphere across more than 15 years of available data. Scientists believe the Spot is a giant vortex similar to the Great Red Spot and also appears to be quasi-stable like the vortices in Earth’s thermosphere. Interactions between charged particles generated from Io and the planet’s strong magnetic field likely resulted in redistribution of heat flow, forming the Spot.


Magnetosphere

Jupiter’s magnetic field is fourteen times as strong as that of Earth, ranging from 4.2 gauss (0.42 mT) at the equator to 10–14 gauss (1.0–1.4 mT) at the poles, making it the strongest in the Solar System (except for sunspots).[60] This field is thought to be generated by eddy currents—swirling movements of conducting materials—within the liquid metallic hydrogen core. The volcanoes on the moon Io emit large amounts of sulfur dioxide forming a gas torus along the moon’s orbit. The gas is ionized in the magnetosphere producing sulfur and oxygen ions. They, together with hydrogen ions originating from the atmosphere of Jupiter, form a plasma sheet in Jupiter’s equatorial plane. The plasma in the sheet co-rotates with the planet causing deformation of the dipole magnetic field into that of magnetodisk. Electrons within the plasma sheet generate a strong radio signature that produces bursts in the range of 0.6–30 MHz.

At about 75 Jupiter radii from the planet, the interaction of the magnetosphere with the solar wind generates a bow shock. Surrounding Jupiter’s magnetosphere is a magnetopause, located at the inner edge of a magnetosheath—a region between it and the bow shock. The solar wind interacts with these regions, elongating the magnetosphere on Jupiter’s lee side and extending it outward until it nearly reaches the orbit of Saturn. The four largest moons of Jupiter all orbit within the magnetosphere, which protects them from the solar wind.

The magnetosphere of Jupiter is responsible for intense episodes of radio emission from the planet’s polar regions. Volcanic activity on Jupiter’s moon Io (see below) injects gas into Jupiter’s magnetosphere, producing a torus of particles about the planet. As Io moves through this torus, the interaction generates Alfvén waves that carry ionized matter into the polar regions of Jupiter. As a result, radio waves are generated through a cyclotron maser mechanism, and the energy is transmitted out along a cone-shaped surface. When Earth intersects this cone, the radio emissions from Jupiter can exceed the solar radio output.

Orbit and rotation

Jupiter is the only planet whose barycenter with the Sun lies outside the volume of the Sun, though by only 7% of the Sun’s radius. The average distance between Jupiter and the Sun is 778 million km (about 5.2 times the average distance between Earth and the Sun, or 5.2 AU) and it completes an orbit every 11.86 years. This is approximately two-fifths the orbital period of Saturn, forming a near orbital resonance between the two largest planets in the Solar System.[85] The elliptical orbit of Jupiter is inclined 1.31° compared to Earth. Because the eccentricity of its orbit is 0.048, Jupiter’s distance from the Sun varies by 75 million km between its nearest approach (perihelion) and furthest distance (aphelion).

The axial tilt of Jupiter is relatively small: only 3.13°. As a result, it does not experience significant seasonal changes, in contrast to, for example, Earth and Mars.

Jupiter’s rotation is the fastest of all the Solar System’s planets, completing a rotation on its axis in slightly less than ten hours; this creates an equatorial bulge easily seen through an Earth-based amateur telescope. The planet is shaped as an oblate spheroid, meaning that the diameter across its equator is longer than the diameter measured between its poles. On Jupiter, the equatorial diameter is 9,275 km (5,763 mi) longer than the diameter measured through the poles.

Because Jupiter is not a solid body, its upper atmosphere undergoes differential rotation. The rotation of Jupiter’s polar atmosphere is about 5 minutes longer than that of the equatorial atmosphere; three systems are used as frames of reference, particularly when graphing the motion of atmospheric features. System I applies from the latitudes 10° N to 10° S; its period is the planet’s shortest, at 9h 50m 30.0s. System II applies at all latitudes north and south of these; its period is 9h 55m 40.6s. System III was first defined by radio astronomers, and corresponds to the rotation of the planet’s magnetosphere; its period is Jupiter’s official rotation.

Observation

Jupiter is usually the fourth brightest object in the sky (after the Sun, the Moon and Venus); at times Mars appears brighter than Jupiter. Depending on Jupiter’s position with respect to the Earth, it can vary in visual magnitude from as bright as −2.94[12] at opposition down to[12] −1.66 during conjunction with the Sun. The mean apparent magnitude is -2.20 with a standard deviation of 0.33[12]. The angular diameter of Jupiter likewise varies from 50.1 to 29.8 arc seconds. Favorable oppositions occur when Jupiter is passing through perihelion, an event that occurs once per orbit.

Earth overtakes Jupiter every 398.9 days as it orbits the Sun, a duration called the synodic period. As it does so, Jupiter appears to undergo retrograde motion with respect to the background stars. That is, for a period Jupiter seems to move backward in the night sky, performing a looping motion.

Because the orbit of Jupiter is outside that of Earth, the phase angle of Jupiter as viewed from Earth never exceeds 11.5°. That is, the planet always appears nearly fully illuminated when viewed through Earth-based telescopes. It was only during spacecraft missions to Jupiter that crescent views of the planet were obtained.[88] A small telescope will usually show Jupiter’s four Galilean moons and the prominent cloud belts across Jupiter’s atmosphere. A large telescope will show Jupiter’s Great Red Spot when it faces Earth.

Mythology

The planet Jupiter has been known since ancient times. It is visible to the naked eye in the night sky and can occasionally be seen in the daytime when the Sun is low. To the Babylonians, this object represented their god Marduk. They used Jupiter’s roughly 12-year orbit along the ecliptic to define the constellations of their zodiac.

The Romans called it “the star of Jupiter” (Iuppiter Stella), as they believed it to be sacred to the principal god of Roman mythology, whose name comes from the Proto-Indo-European vocative compound *Dyēu-pəter (nominative: *Dyēus-pətēr, meaning “Father Sky-God”, or “Father Day-God”). In turn, Jupiter was the counterpart to the mythical Greek Zeus (Ζεύς), also referred to as Dias (Δίας), the planetary name of which is retained in modern Greek. The ancient Greeks knew the planet as Phaethon, meaning “shining one” or “blazing star.” As supreme god of the Roman pantheon, Jupiter was the god of thunder, lightning and storms, and appropriately called the god of light and sky.

The astronomical symbol for the planet, Jupiter symbol.svg, is a stylized representation of the god’s lightning bolt. The original Greek deity Zeus supplies the root zeno-, used to form some Jupiter-related words, such as zenographic.

Jovian is the adjectival form of Jupiter. The older adjectival form jovial, employed by astrologers in the Middle Ages, has come to mean “happy” or “merry”, moods ascribed to Jupiter’s astrological influence.

The Chinese, Vietnamese, Koreans and Japanese called it the “wood star” (Chinese: 木星; pinyin: mùxīng), based on the Chinese Five Elements.Chinese Taoism personified it as the Fu star. The Greeks called it Φαέθων (Phaethon, meaning “blazing”).

In Vedic astrology, Hindu astrologers named the planet after Brihaspati, the religious teacher of the gods, and often called it “Guru”, which literally means the “Heavy One”.

In Germanic mythology, Jupiter is equated to Thor, whence the English name Thursday for the Roman dies Jovis.

In the Central Asian-Turkic myths, Jupiter is called Erendiz or Erentüz, from eren (of uncertain meaning) and yultuz (“star”). There are many theories about the meaning of eren. These peoples calculated the period of the orbit of Jupiter as 11 years and 300 days. They believed that some social and natural events connected to Erentüz’s movements on the sky.